首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8821篇
  免费   1590篇
  国内免费   2511篇
  2024年   9篇
  2023年   269篇
  2022年   182篇
  2021年   359篇
  2020年   507篇
  2019年   523篇
  2018年   489篇
  2017年   476篇
  2016年   491篇
  2015年   488篇
  2014年   466篇
  2013年   570篇
  2012年   425篇
  2011年   451篇
  2010年   407篇
  2009年   493篇
  2008年   560篇
  2007年   609篇
  2006年   611篇
  2005年   525篇
  2004年   481篇
  2003年   422篇
  2002年   390篇
  2001年   381篇
  2000年   352篇
  1999年   298篇
  1998年   274篇
  1997年   201篇
  1996年   168篇
  1995年   151篇
  1994年   137篇
  1993年   114篇
  1992年   114篇
  1991年   91篇
  1990年   84篇
  1989年   63篇
  1988年   34篇
  1987年   44篇
  1986年   42篇
  1985年   24篇
  1984年   33篇
  1983年   21篇
  1982年   31篇
  1981年   7篇
  1980年   15篇
  1979年   10篇
  1978年   8篇
  1977年   7篇
  1976年   5篇
  1975年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
Land‐cover change can alter the spatiotemporal distribution of water inputs to mountain ecosystems, an important control on land‐surface and land‐atmosphere hydrologic fluxes. In eastern Mexico, we examined the influence of three widespread land‐cover types, montane cloud forest, coffee agroforestry, and cleared areas, on total and net water inputs to soil. Stand structural characteristics, as well as rain, fog, stemflow, and throughfall (water that falls through the canopy) water fluxes were measured across 11 sites during wet and dry seasons from 2005 to 2008. Land‐cover type had a significant effect on annual and seasonal net throughfall (NTF <0=canopy water retention plus canopy evaporation; NTF >0=fog water deposition). Forest canopies retained and/or lost to evaporation (i.e. NTF<0) five‐ to 11‐fold more water than coffee agroforests. Moreover, stemflow was fourfold higher under coffee shade than forest trees. Precipitation seasonality and phenological patterns determined the magnitude of these land‐cover differences, as well as their implications for the hydrologic cycle. Significant negative relationships were found between NTF and tree leaf area index (R2=0.38, P<0.002), NTF and stand basal area (R2=0.664, P<0.002), and stemflow and epiphyte loading (R2=0.414, P<0.001). These findings indicate that leaf and epiphyte surface area reductions associated with forest conversion decrease canopy water retention/evaporation, thereby increasing throughfall and stemflow inputs to soil. Interannual precipitation variability also altered patterns of water redistribution across this landscape. Storms and hurricanes resulted in little difference in forest‐coffee wet season NTF, while El Niño Southern Oscillation was associated with a twofold increase in dry season rain and fog throughfall water deposition. In montane headwater regions, changes in water delivery to canopies and soils may affect infiltration, runoff, and evapotranspiration, with implications for provisioning (e.g. water supply) and regulating (e.g. flood mitigation) ecosystem services.  相似文献   
32.
For the estimation of the population mean in stratified random sampling a ‘Combined Product Estimator’ is proposed which is more efficient than the ‘Combined Ratio’ and ‘Separate Ratio’ estimators. Also, the proposed estimator have exact expressions for bias and mean square error. An empirical illustration is given to compare the efficiencies of different estimators.  相似文献   
33.
Aim Africa is expected to face severe changes in climatic conditions. Our objectives are: (1) to model trends and the extent of future biome shifts that may occur by 2050, (2) to model a trend in tree cover change, while accounting for human impact, and (3) to evaluate uncertainty in future climate projections. Location West Africa. Methods We modelled the potential future spatial distribution of desert, grassland, savanna, deciduous and evergreen forest in West Africa using six bioclimatic models. Future tree cover change was analysed with generalized additive models (GAMs). We used climate data from 17 general circulation models (GCMs) and included human population density and fire intensity to model tree cover. Consensus projections were derived via weighted averages to: (1) reduce inter‐model variability, and (2) describe trends extracted from different GCM projections. Results The strongest predicted effect of climate change was on desert and grasslands, where the bioclimatic envelope of grassland is projected to expand into the desert by an area of 2 million km2. While savannas are predicted to contract in the south (by 54 ± 22 × 104 km2), deciduous and evergreen forest biomes are expected to expand (64 ± 13 × 104 km2 and 77 ± 26 × 104 km2). However, uncertainty due to different GCMs was particularly high for the grassland and the evergreen biome shift. Increasing tree cover (1–10%) was projected for large parts of Benin, Burkina Faso, Côte d’Ivoire, Ghana and Togo, but a decrease was projected for coastal areas (1–20%). Furthermore, human impact negatively affected tree cover and partly changed the direction of the projected change from increase to decrease. Main conclusions Considering climate change alone, the model results of potential vegetation (biomes) show a ‘greening’ trend by 2050. However, the modelled effects of human impact suggest future forest degradation. Thus, it is essential to consider both climate change and human impact in order to generate realistic future tree cover projections.  相似文献   
34.
35.
36.
A number of remote sensing studies have evaluated the temporal trends of the normalized difference vegetation index (NDVI or vegetation greenness) in the North American boreal forest during the last two decades, often getting quite different results. To examine the effect that the use of different datasets might be having on the estimated trends, we compared the temporal trends of recently burned and unburned sites of boreal forest in central Canada calculated from two datasets: the Global Inventory, Monitoring, and Modeling Studies (GIMMS), which is the most commonly used 8 km dataset, and a new 1 km dataset developed by the Canadian Centre for Remote Sensing (CCRS). We compared the NDVI trends of both datasets along a fire severity gradient in order to evaluate the variance in regeneration rates. Temporal trends were calculated using the seasonal Mann–Kendall trend test, a rank‐based, nonparametric test, which is robust against seasonality, nonnormality, heteroscedasticity, missing values, and serial dependence. The results showed contrasting NDVI trends between the CCRS and the GIMMS datasets. The CCRS dataset showed NDVI increases in all recently burned sites and in 50% of the unburned sites. Surprisingly, the GIMMS dataset did not capture the NDVI recovery in most burned sites and even showed NDVI declines in some burned sites one decade after fire. Between 50% and 75% of GIMMS pixels showed NDVI decreases in the unburned forest compared with <1% of CCRS pixels. Being the most broadly used dataset for monitoring ecosystem and carbon balance changes, the bias towards negative trends in the GIMMS dataset in the North American boreal forest has broad implications for the evaluation of vegetation and carbon dynamics in this region and globally.  相似文献   
37.
Multiple species of Phlebotominae are vectors of Leishmania (Protozoa: Trypanosomatidae), which causes visceral leishmaniasis (VL) and cutaneous leishmaniasis (CL). To describe the Phlebotominae (Diptera: Psychodidae) related to the environments of black and gold howler monkeys Alouatta caraya (Humbodlt, 1812) (Primates: Atelidae), potential vectors were sampled in different landscapes and vertical strata of sleeping trees. Phlebotomine captured between December 2011 and March 2012 (2365 individuals) belonged to eight species, of which Nyssomyia neivai (Pinto, 1926) (61.4%) and Migonemyia migonei (França, 1920) (18.73%) were the most abundant, and Ny. withmani was recorded for the first time in the Chaco province. In the ‘peri‐domestic’ landscape, the phlebotomine were mainly captured in henhouses (78.7%), whereas the tree canopy in ‘rural’ and ‘wild’ landscapes yielded 31.2% and 29.1% of the phlebotomine, respectively. A significant association between the type of landscape and the species of phlebotomine was observed by multivariate analysis. Lutzomyia longipalpis (Lutz & Neiva, 1912) and Mg. migonei were associated with ‘peri‐domestic’ landscape, and Ny. neivai was associated with the ‘wild’ landscape. The results of this prospective study suggest that the interaction between phlebotomine and A. caraya could be a key factor with respect to understanding the epidemiology of leishmaniasis.  相似文献   
38.
39.
White‐sand forests are patchily distributed ecosystems covering just 5% of Amazonia that host many specialist species of birds not found elsewhere, and these forests are threatened due to their small size and human exploitation of sand for construction projects. As a result, many species of birds that are white‐sand specialists are at risk of extinction, and immediate conservation action is paramount for their survival. Our objective was to evaluate current survey methods and determine the relative effect of the size of patches of these forests on the presence or absence of white‐sand specialists. Using point counts and autonomous recorders, we surveyed avian assemblages occupying patches of white‐sand forest in the Peruvian Amazon in April 2018. Overall, we detected 126 species, including 21 white‐sand forest specialists. We detected significantly more species of birds per survey point with autonomous recorders than point counts. We also found a negative relationship between avian species richness and distance from the edge of patches of white‐sand forest, but a significant, positive relationship when only counting white‐sand specialists. Although we detected more species with autonomous recorders, point counts were more effective for detecting canopy‐dwelling passerines. Therefore, we recommend that investigators conducting surveys for rare and patchily distributed species in the tropics use a mixed‐method approach that incorporates both autonomous recorders and visual observation. Finally, our results suggest that conserving large, continuous patches of white‐sand forest may increase the likelihood of survival of species of birds that are white‐sand specialists.  相似文献   
40.
Habitat loss is one of the main threats to wildlife. Therefore, knowledge of habitat use and preference is essential for the design of conservation strategies and identification of priority sites for the protection of endangered species. The yellow‐tailed woolly monkey (Lagothrix flavicauda Humboldt, 1812), categorized as Critically Endangered on the IUCN Red List, is endemic to montane forests in northern Peru where its habitat is greatly threatened. We assessed how habitat use and preference in L. flavicauda are linked to forest structure and composition. The study took place near La Esperanza, in the Amazonas region, Peru. Our objective was to identify characteristics of habitat most utilized by L. flavicauda to provide information that will be useful for the selection of priority sites for conservation measures. Using presence records collected from May 2013 to February 2014 for one group of L. flavicauda, we classified the study site into three different use zones: low‐use, medium‐use, and high‐use. We assessed forest structure and composition for all use zones using 0.1 ha Gentry vegetation transects. Results show high levels of variation in plant species composition across the three use zones. Plants used as food resources had considerably greater density, dominance, and ecological importance in high‐use zones. High‐use zones presented similar structure to medium‐ and low‐use zones; thus it remains difficult to assess the influence of forest structure on habitat preference. We recommend focusing conservation efforts on areas with a similar floristic composition to the high‐use zones recorded in this study and suggest utilizing key alimentation species for reforestation efforts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号